Bayesian Monte Carlo Methods in Scientific Inference leaf node


URI

https://openalex.org/T12056

Label

Bayesian Monte Carlo Methods in Scientific Inference

Description

This cluster of papers focuses on the application of Bayesian Monte Carlo methods, such as Markov Chain Monte Carlo (MCMC), Approximate Bayesian Computation, and Hamiltonian Monte Carlo, in scientific inference for inverse problems, model selection, and statistical estimation. It also explores adaptive MCMC algorithms and stochastic gradient Langevin dynamics for efficient parameter inference and approximation algorithms.

Implementation

@prefix oasubfields: <https://openalex.org/subfields/> .
@prefix openalex: <https://lambdamusic.github.io/openalex-hacks/ontology/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://openalex.org/T12056> a skos:Concept ;
    rdfs:label "Bayesian Monte Carlo Methods in Scientific Inference"@en ;
    rdfs:isDefinedBy openalex: ;
    owl:sameAs <https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo>,
        <https://openalex.org/T12056> ;
    skos:broader oasubfields:2613 ;
    skos:definition "This cluster of papers focuses on the application of Bayesian Monte Carlo methods, such as Markov Chain Monte Carlo (MCMC), Approximate Bayesian Computation, and Hamiltonian Monte Carlo, in scientific inference for inverse problems, model selection, and statistical estimation. It also explores adaptive MCMC algorithms and stochastic gradient Langevin dynamics for efficient parameter inference and approximation algorithms."@en ;
    skos:inScheme openalex: ;
    skos:prefLabel "Bayesian Monte Carlo Methods in Scientific Inference"@en ;
    openalex:cited_by_count 342669 ;
    openalex:works_count 17507 .